
Introduction to Transport Phenomena: Recap Quiz Modules 1-3

Module 1

Q#	Question	True	False
Q01	In fluid mechanics, the basic conservation laws are those of volume, energy and momentum.	<input type="checkbox"/>	<input type="checkbox"/>
Q02	Can you make a drawing which represents Bernoulli equation as the conservation of energy along a streamline?		
Q03	The Bernoulli equation assumes the fluid to be incompressible.	<input type="checkbox"/>	<input type="checkbox"/>
Q04	Can you write the Bernoulli equation?		
Q05	In a pipe with changing diameter, the velocity is always constant	<input type="checkbox"/>	<input type="checkbox"/>
Q06	You want to extinguish a little fire on the roof of your house ($h = 10\text{m}$). In the garden, you find a water hose which sprays water at $15 \frac{\text{m}}{\text{s}}$ from its nozzle. Are you able to extinguish the fire?	<input type="checkbox"/>	<input type="checkbox"/>
Q07	Assuming friction, is the velocity of a fluid in a pipe always zero at the walls?	<input type="checkbox"/>	<input type="checkbox"/>
Q08	Draw the velocity profile in a straight pipe in laminar flow regime assuming friction.		
Q09	The Reynolds number has the dimension of $\text{kg} * \frac{\text{m}}{\text{s}}$. Is this true?	<input type="checkbox"/>	<input type="checkbox"/>
Q10	The Reynolds number is a measure of the ratio of inertial force to viscous forces	<input type="checkbox"/>	<input type="checkbox"/>
Q11	For laminar flow in a horizontal pipeline under a constant pressure gradient, a doubling of the diameter results in a doubling of the flow rate	<input type="checkbox"/>	<input type="checkbox"/>
Q12	The Fanning friction factor is twice the Darcy friction factor	<input type="checkbox"/>	<input type="checkbox"/>
Q13	The Fanning friction factor is directly proportional to the Reynolds number	<input type="checkbox"/>	<input type="checkbox"/>
Q14	For pipe flow, the friction factor varies gradually as the Reynolds number increases from laminar flow to turbulent flow	<input type="checkbox"/>	<input type="checkbox"/>
Q15	Friction is always the only loss to consider in a pipe system	<input type="checkbox"/>	<input type="checkbox"/>

Module 2

Q#	Question	True	False
Q01	Transport by advection is the transport occurring by the bulk movement of a fluid	<input type="checkbox"/>	<input type="checkbox"/>
Q02	Can you draw the convention regarding the direction of normal unit vector with respect to inlet and outlet surface of the fluid flow?		
Q03	The units of the mass flow rate are $\text{kg}/\text{min} \cdot \text{m}^2$	<input type="checkbox"/>	<input type="checkbox"/>
Q04	The control volume is a real component of a pipe system	<input type="checkbox"/>	<input type="checkbox"/>
Q05	The only force acting on the surface of the control volume is the pressure force	<input type="checkbox"/>	<input type="checkbox"/>
Q06	The only volume force is gravity		
Q07	The force exerted by the control volume on the fluid is a reaction force	<input type="checkbox"/>	<input type="checkbox"/>
Q08	You can ignore the coordinate system in solving problems of advective transport	<input type="checkbox"/>	<input type="checkbox"/>

Module 3

Q#	Question	True	False
Q01	The Fourier's Law describes convective heat transfer.	<input type="checkbox"/>	<input type="checkbox"/>
Q02	In liquids and gases heat conduction occurs through molecular collisions	<input type="checkbox"/>	<input type="checkbox"/>
Q03	Heat conduction in solids occurs only through lattice vibrations	<input type="checkbox"/>	<input type="checkbox"/>
Q04	The thermal conductivity of a liquid increases with increasing temperature and the thermal conductivity of a gas decreases with increasing temperature.	<input type="checkbox"/>	<input type="checkbox"/>
Q05	The temperature profile at steady state between a hot and cold surface is parabolic if heat is transferred by conduction.	<input type="checkbox"/>	<input type="checkbox"/>
Q06	A ventilator cooling a hot surface is an example of forced convection	<input type="checkbox"/>	<input type="checkbox"/>
Q07	The heat transfer coefficient is essential to describe heat transfer by conduction	<input type="checkbox"/>	<input type="checkbox"/>
Q08	The temperature remains constant within the boundary layers	<input type="checkbox"/>	<input type="checkbox"/>
Q09	Circuits of thermal resistances resembles those of electrical resistances.	<input type="checkbox"/>	<input type="checkbox"/>
Q10	When heat is transferred by conduction across a series of walls perpendicular to the flux, at	<input type="checkbox"/>	<input type="checkbox"/>

steady state and in the absence of losses, the heat flux changes at each interface.

Q11 When heat is transferred by conduction across a series of walls parallel to the flux, the same heat flux passes through each wall.

Q12 Radiative heat transfer does not require a medium between the objects that exchange heat.

Q13 Draw the temperature profile in a counter flow and in a parallel flow heat exchanger and identify $T_{c,i}$, $T_{c,o}$, $T_{o,i}$ and $T_{h,o}$

Q14 A counter flow heat exchanger is more efficient than a parallel flow heat exchanger keeping all the parameters the same